Detection: Linux Shred Overwrite Command

Description

The following analytic detects the execution of the 'shred' command on a Linux machine, which is used to overwrite files to make them unrecoverable. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process names and command-line arguments. This activity is significant because the 'shred' command can be used in destructive attacks, such as those seen in the Industroyer2 malware targeting energy facilities. If confirmed malicious, this activity could lead to the permanent destruction of critical files, severely impacting system integrity and data availability.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where Processes.process_name =shred AND Processes.process IN ("*-n*", "*-u*", "*-z*", "*-s*") by Processes.parent_process_name Processes.process_name Processes.process Processes.process_id Processes.parent_process_id Processes.process_guid Processes.dest Processes.user 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `linux_shred_overwrite_command_filter`

Data Source

Name Platform Sourcetype Source Supported App
Sysmon for Linux EventID 1 Linux icon Linux 'sysmon:linux' 'Syslog:Linux-Sysmon/Operational' N/A

Macros Used

Name Value
security_content_ctime convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$)
linux_shred_overwrite_command_filter search *
linux_shred_overwrite_command_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1485 Data Destruction Impact
KillChainPhase.ACTIONS_ON_OBJECTIVES
NistCategory.DE_CM
Cis18Value.CIS_10
APT38
Gamaredon Group
LAPSUS$
Lazarus Group
Sandworm Team

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Notable Yes
Rule Title %name%
Rule Description %description%
Notable Event Fields user, dest
Creates Risk Event True
This configuration file applies to all detections of type TTP. These detections will use Risk Based Alerting and generate Notable Events.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

Administrator or network operator can use this application for automation purposes. Please update the filter macros to remove false positives.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
A possible shred overwrite command $process$ executed on $dest$ 49 70 70
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset Syslog:Linux-Sysmon/Operational sysmon:linux
Integration ✅ Passing Dataset Syslog:Linux-Sysmon/Operational sysmon:linux

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 2