Detection: Windows Mimikatz Binary Execution

Description

The following analytic identifies the execution of the native mimikatz.exe binary on Windows systems, including instances where the binary is renamed. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process names and original file names. This activity is significant because Mimikatz is a widely used tool for extracting authentication credentials, posing a severe security risk. If confirmed malicious, this activity could allow attackers to obtain sensitive credentials, escalate privileges, and move laterally within the network, leading to potential data breaches and system compromise.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where (Processes.process_name=mimikatz.exe OR Processes.original_file_name=mimikatz.exe) by Processes.dest Processes.user Processes.parent_process_name Processes.process_name Processes.original_file_name Processes.process Processes.process_id Processes.parent_process_id 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `windows_mimikatz_binary_execution_filter`

Data Source

Name Platform Sourcetype Source Supported App
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike' N/A

Macros Used

Name Value
security_content_ctime convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$)
windows_mimikatz_binary_execution_filter search *
windows_mimikatz_binary_execution_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1003 OS Credential Dumping Credential Access
KillChainPhase.EXPLOITAITON
NistCategory.DE_CM
Cis18Value.CIS_10
APT28
APT32
APT39
Axiom
Leviathan
Poseidon Group
Sowbug
Suckfly
Tonto Team

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Notable Yes
Rule Title %name%
Rule Description %description%
Notable Event Fields user, dest
Creates Risk Event True
This configuration file applies to all detections of type TTP. These detections will use Risk Based Alerting and generate Notable Events.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

False positives should be limited as this is directly looking for Mimikatz, the credential dumping utility.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
An instance of $parent_process_name$ spawning $process_name$ was identified on endpoint $dest$ by user $user$ attempting dump credentials. 100 100 100
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 3