ID | Technique | Tactic |
---|---|---|
T1564.003 | Hidden Window | Defense Evasion |
Detection: Headless Browser Usage
Description
The following analytic detects the usage of headless browsers within an organization. It identifies processes containing the "--headless" and "--disable-gpu" command line arguments, which are indicative of headless browsing. This detection leverages data from the Endpoint.Processes datamodel to identify such processes. Monitoring headless browser usage is significant as these tools can be exploited by adversaries for malicious activities like web scraping, automated testing, and undetected web interactions. If confirmed malicious, this activity could lead to unauthorized data extraction, automated attacks, or other covert operations on web applications.
Search
1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where (Processes.process="*--headless*" AND Processes.process="*--disable-gpu*") by Processes.dest Processes.user Processes.parent_process Processes.process_name Processes.process Processes.process_id Processes.parent_process_id
3| `drop_dm_object_name(Processes)`
4| `security_content_ctime(firstTime)`
5| `security_content_ctime(lastTime)`
6| `headless_browser_usage_filter`
Data Source
Name | Platform | Sourcetype | Source |
---|---|---|---|
CrowdStrike ProcessRollup2 | N/A | 'crowdstrike:events:sensor' |
'crowdstrike' |
Sysmon EventID 1 | Windows | 'xmlwineventlog' |
'XmlWinEventLog:Microsoft-Windows-Sysmon/Operational' |
Windows Event Log Security 4688 | Windows | 'xmlwineventlog' |
'XmlWinEventLog:Security' |
Macros Used
Name | Value |
---|---|
security_content_ctime | convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$) |
headless_browser_usage_filter | search * |
headless_browser_usage_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Risk Event | False |
Implementation
To successfully implement this search you need to be ingesting information on process that include the name of the process responsible for the changes from your endpoints into the Endpoint
datamodel in the Processes
node. In addition, confirm the latest CIM App 4.20 or higher is installed and the latest TA for the endpoint product.
Known False Positives
This hunting analytic is meant to assist with baselining and understanding headless browsing in use. Filter as needed.
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
Behavior related to headless browser usage detected on $dest$ by $user$. | 15 | 30 | 50 |
References
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | ✅ Passing | N/A | N/A | N/A |
Unit | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
XmlWinEventLog |
Integration | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
XmlWinEventLog |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 3