Detection: Windows Security Support Provider Reg Query

Description

The following analytic identifies command-line activity querying the registry for Security Support Providers (SSPs) related to Local Security Authority (LSA) protection and configuration. This detection leverages Endpoint Detection and Response (EDR) telemetry, focusing on processes accessing specific LSA registry paths. Monitoring this activity is crucial as adversaries and post-exploitation tools like winpeas may use it to gather information on LSA protections, potentially leading to credential theft. If confirmed malicious, attackers could exploit this to scrape password hashes or plaintext passwords from memory, significantly compromising system security.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where `process_reg` AND Processes.process = "* query *" AND Processes.process = "*\\SYSTEM\\CurrentControlSet\\Control\\LSA*" Processes.process IN ("*RunAsPPL*" , "*LsaCfgFlags*") by Processes.process_name Processes.original_file_name Processes.process Processes.process_id Processes.process_guid Processes.parent_process_name Processes.parent_process Processes.parent_process_guid Processes.dest Processes.user 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `windows_security_support_provider_reg_query_filter`

Data Source

Name Platform Sourcetype Source Supported App
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike' N/A

Macros Used

Name Value
process_reg (Processes.process_name=reg.exe OR Processes.original_file_name=reg.exe)
windows_security_support_provider_reg_query_filter search *
windows_security_support_provider_reg_query_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1547.005 Security Support Provider Persistence
T1547 Boot or Logon Autostart Execution Privilege Escalation
KillChainPhase.EXPLOITAITON
KillChainPhase.INSTALLATION
NistCategory.DE_AE
Cis18Value.CIS_10

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Risk Event True
This configuration file applies to all detections of type anomaly. These detections will use Risk Based Alerting.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

unknown

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
process with reg query command line $process$ in $dest$ 9 30 30
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 2