ID | Technique | Tactic |
---|---|---|
T1566 | Phishing | Initial Access |
Detection: Suspicious Email - UBA Anomaly
DEPRECATED DETECTION
This detection has been marked as deprecated by the Splunk Threat Research team. This means that it will no longer be maintained or supported. If you have any questions or concerns, please reach out to us at research@splunk.com.
Description
This detection looks for emails that are suspicious because of their sender, domain rareness, or behavior differences. This is an anomaly generated by Splunk User Behavior Analytics (UBA).
Search
1
2|tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime values(All_UEBA_Events.category) as category from datamodel=UEBA where nodename=All_UEBA_Events.UEBA_Anomalies All_UEBA_Events.UEBA_Anomalies.uba_model = "SuspiciousEmailDetectionModel" by All_UEBA_Events.description All_UEBA_Events.severity All_UEBA_Events.user All_UEBA_Events.uba_event_type All_UEBA_Events.link All_UEBA_Events.signature All_UEBA_Events.url All_UEBA_Events.UEBA_Anomalies.uba_model
3| `drop_dm_object_name(All_UEBA_Events)`
4| `drop_dm_object_name(UEBA_Anomalies)`
5| `security_content_ctime(firstTime)`
6| `security_content_ctime(lastTime)`
7| `suspicious_email___uba_anomaly_filter`
Data Source
No data sources specified for this detection.
Macros Used
Name | Value |
---|---|
security_content_ctime | convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$) |
suspicious_email___uba_anomaly_filter | search * |
suspicious_email___uba_anomaly_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Risk Event | True |
Implementation
You must be ingesting data from email logs and have Splunk integrated with UBA. This anomaly is raised by a UBA detection model called "SuspiciousEmailDetectionModel." Ensure that this model is enabled on your UBA instance.
Known False Positives
This detection model will alert on any sender domain that is seen for the first time. This could be a potential false positive. The next step is to investigate and add the URL to an allow list if you determine that it is a legitimate sender.
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
tbd | 25 | 50 | 50 |
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | Not Applicable | N/A | N/A | N/A |
Unit | ❌ Failing | N/A | N/A |
N/A |
Integration | ❌ Failing | N/A | N/A |
N/A |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 5